NMDA Receptors Mediate Synaptic Competition in Culture
نویسندگان
چکیده
BACKGROUND Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. METHODOLOGY/PRINCIPAL FINDINGS GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. CONCLUSIONS/SIGNIFICANCE The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde 'reward' signal generated by WT neurons, although in this paradigm there was no 'punishment' signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous system.
منابع مشابه
In developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death
It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasyna...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملModulation of NMDA receptor function: implications for vertebrate neural development.
The NMDA subtype of glutamate receptor is hypothesized to mediate synaptic competition in the developing brain by stabilizing converging synapses that have correlated activity patterns. Disruption of NMDA receptor function during development interferes with synapse elimination and sensory map formation. Moreover, many studies indicate that NMDA receptor function is high during times of synaptic...
متن کاملDevelopmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons.
AMPA and NMDA receptors mediate most excitatory synaptic transmission in the CNS. We have developed antibodies that recognize all AMPA or all NMDA receptor variants on the surface of living neurons. AMPA receptor variants were identified with a polyclonal antibody recognizing the conserved extracellular loop region of all four AMPA receptor subunits (GluR1-4, both flip and flop), whereas NMDA r...
متن کامل